检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴肖锋[1] 仲伟坤[1] 张程[1] 孙艳学 陈维华 于宗平
机构地区:[1]东北电力大学电气工程学院,吉林吉林132012 [2]云峰发电厂,吉林集安134200 [3]牡丹江电业局,黑龙江牡丹江157000 [4]广东粤电靖海发电有限公司,广东揭阳515223
出 处:《陕西电力》2012年第8期38-41,共4页Shanxi Electric Power
摘 要:针对传统粒子群算法搜索精度低和易早熟的缺点,提出了一种自适应模糊粒子群算法(AFPSO)对电力系统进行无功优化。该算法对惯性权重进行非线性的调整,有效地提高了算法的收敛速度和精度,并对位置的更新采用模糊控制,较好地解决了粒子群易早熟的问题。将该算法应用于无功优化问题中,在IEEE-30节点系统上进行测试,证明了AFPSO算法的有效性和优越性。In order to overcome the drawback of traditional particle swarm optimization (PSO) such as low search precision and falling into local optimization, an adaptive fuzzy PSO is proposed to electric power system reactive power optimization. In this algorithm, inertia weight was nonlinearly adjusted, which effectively improve the convergence speed and accuracy, and the particle position update are controlled by fuzzy membership function, which avoids the prematurity problem of particle swarm. The algorithm was applied to reactive power optimization studies, and simulation results on IEEE 30-bus power system indicate that the validity and superiority of proposed algorithm.
分 类 号:TM714.3[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.139.22