检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱彦[1]
出 处:《五邑大学学报(自然科学版)》2012年第3期23-27,共5页Journal of Wuyi University(Natural Science Edition)
基 金:教育部博士点基金资助项目(20113401110001)
摘 要:通过Mittag-Leffler矩阵函数构造的能观性Gram矩阵和Cayley-Hamilton定理获得了一类带Caputo导数、具有分布型时滞的分数阶控制系统cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+Du(t),x(0)=x0, 具有能观性的2个充要条件:1)系统在[0,t f]上,存在时刻tf>0,使Gram矩阵W0[0,tf]=integral from n=0 to tf(Eα(AT tα)CTCEα(A tα)dt)非奇异;2)若系统的能观性判别矩阵为Q0{C CA … CA(n-1)},则rankQ0=rank{C CA … CA(n-1)}=n时,系统是能观的.The paper studies on the observability of fractional dynamical systems with distributed delays cDαx(t)=Ax(t)+integral from n=-h to 0(dxB(t,x)u(t+x)),t∈J:=J/{t1,t2,…tk},J:=[0,T],y(t)=Cx(t)+Du(t),x(0)=x0 where cDα is the Caputo fractional derivative.By using the observability Gram matrix which is defined by Mittag Leffler matrix function and Cayley-Hamilton theorem,some sufficient conditions of observability are obtained:1) The system is observable on [0,tf]if and only if the observability Gammian matrix W0[0,tf]=integral from n=0 to tf(Eα(AT tα)CTCEα(A tα)dt) is non-singular,for some tf〉0;2) The system is observable on [0,tf] if and only if rankQ0=rank{C CA … CA(n-1)}=n.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.241.210