基于流形学习的基因微阵列数据分类方法  被引量:1

A Classification Method Based on Manifold Learning for Gene Microarray Data

在线阅读下载全文

作  者:李强[1] 石陆魁[1] 刘恩海[1] 王歌[1] 

机构地区:[1]河北工业大学计算机科学与软件学院,天津300401

出  处:《郑州大学学报(工学版)》2012年第5期121-124,共4页Journal of Zhengzhou University(Engineering Science)

基  金:天津市应用基础及前沿技术研究计划资助项目(10JCZDJC16000)

摘  要:提出了一种结合流形学习方法与分类算法的基因微阵列数据分类模型,先用流形学习算法对基因微阵列数据进行降维处理,然后再对降维后的数据进行分类.在实验中将流形学习算法LLE、ISO-MAP、LE和LTSA与三种分类算法相结合,并与直接用高维数据进行分类的结果进行了比较,实验结果表明所提出的模型极大地提高了分类精度,同时也提高了分类算法的执行效率.Each sample in gene microarray data contains thousands or even tens of thousands of genes. It is necessary to reduce the dimension of the data before classifying them for obtaining better classified results. Manifold learning, as a nonlinear dimension reduction method, can discover the intrinsic laws hidden in the high dimensional data and has been widely applied in areas such as pattern recognition. A model combining manifold learning with classified algorithms was proposed to classify microarray data. In the model, the dimen- sion of microarray data was firstly reduced with some manifold learning method. Then the data reduced the di- mension were classified. In experiments, several manifold learning algorithms including LLE, ISOMAP, LE and LTSA are combined with three classified methods. And the results are compared with those from directly

关 键 词:流形学习 分类 基因 微阵列数据 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象