关于复射影空间中极小子流形的某些整体Pinching定理  被引量:1

On some global Pinching theorems for minimal submanifolds of a complex projective space

在线阅读下载全文

作  者:王一令[1] 

机构地区:[1]浙江大学数学系,浙江杭州310028

出  处:《浙江大学学报(理学版)》2000年第4期388-393,共6页Journal of Zhejiang University(Science Edition)

摘  要:本文利用对复射影空间中紧致极小子流形的第二基本形式长度平方进行积分形式的估计方法 ,证明了复射影空间中紧致复子流形和紧致全实极小子流形的整体Let \$M\+n\$ be a compact minimal submanifold of a complex projective space \$CP\+\{n+p\}\$, and \$σ\$ the second fundamental form of \$M\+n\$. In this note, the results of \ were improved and the following global Pinching theorems were obtained.\;Theorem 1: Let \$M\+n\$ be a complex \$n\$\|dimentional compact complex submanifold in \$CP\+\{n+p\}(n≥2).\$ Let \$σ\$ the second fundamental form of \$M\$. Then there is a comtant \$A(n)\$ depending only on \$n\$, such that if \$‖|σ|\+2‖\-\{n2\}<A(n)\$, then \$σ≡ 0,i.e ., M\+n\$ must be totally geodesic.\;Theorem 2: Let \$M\+n\$ be an \$n\$\|dimentional compact totally real minimal submanifold in \$CP\+\{n+p\}(n≥3).\$ Let \$σ\$ the second fundamental form of \$M\$. Then there is a constant \$A′(n)\$ depending only on \$n\$, such that if \$‖|σ|\+2‖\-\{n2\}<A′(n),\$ then \$σ≡0, i.e ., M\+n\$ must be totally geodesic. Here\$\$‖f‖\-k=(∫\-Mf\+k)\+\{1/k\}.\$\$

关 键 词:复射影空间 整体PINCHING定理 极小子流形 

分 类 号:O186.13[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象