检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王一令[1]
出 处:《浙江大学学报(理学版)》2000年第4期388-393,共6页Journal of Zhejiang University(Science Edition)
摘 要:本文利用对复射影空间中紧致极小子流形的第二基本形式长度平方进行积分形式的估计方法 ,证明了复射影空间中紧致复子流形和紧致全实极小子流形的整体Let \$M\+n\$ be a compact minimal submanifold of a complex projective space \$CP\+\{n+p\}\$, and \$σ\$ the second fundamental form of \$M\+n\$. In this note, the results of \ were improved and the following global Pinching theorems were obtained.\;Theorem 1: Let \$M\+n\$ be a complex \$n\$\|dimentional compact complex submanifold in \$CP\+\{n+p\}(n≥2).\$ Let \$σ\$ the second fundamental form of \$M\$. Then there is a comtant \$A(n)\$ depending only on \$n\$, such that if \$‖|σ|\+2‖\-\{n2\}<A(n)\$, then \$σ≡ 0,i.e ., M\+n\$ must be totally geodesic.\;Theorem 2: Let \$M\+n\$ be an \$n\$\|dimentional compact totally real minimal submanifold in \$CP\+\{n+p\}(n≥3).\$ Let \$σ\$ the second fundamental form of \$M\$. Then there is a constant \$A′(n)\$ depending only on \$n\$, such that if \$‖|σ|\+2‖\-\{n2\}<A′(n),\$ then \$σ≡0, i.e ., M\+n\$ must be totally geodesic. Here\$\$‖f‖\-k=(∫\-Mf\+k)\+\{1/k\}.\$\$
关 键 词:复射影空间 整体PINCHING定理 极小子流形
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31