检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制工程》2012年第6期978-981,986,共5页Control Engineering of China
基 金:重庆市科技攻关项目(CSTC2007AB3035;CSTC2008AB3049)
摘 要:为减轻船舶在大风浪中剧烈的横摇,减摇鳍是目前应用最广泛的减摇装置。针对船舶减摇鳍系统的非线性和不确定性,在系统不确定性函数结构未知的情况下,提出一种RBF神经网络自适应滑模控制方法。采用RBF神经网络逼近系统不确定动态,并设计权值的自适应律,结合滑模控制增强系统的鲁棒性。在不同有义波高和不同浪向角下,建立随机海浪的干扰模型,应用simulink对系统进行仿真。仿真结果表明,该控制策略在各种海况下,均具有良好的减摇效果和较强的鲁棒性。The ship fin stabilizer is a typical uncertain nonlinear system, and it is often assumed that the system uncertain function is unknown. A basic RBF neural network adaptive sliding mode control (SMC) is proposed to reduce the violent roll of the ship in rough seas. It uses RBF neural network to approximate the system uncertain dynamics and design the weights adaptive laws, and it utilizes SMC to guarantee the system robustness. Furthermore, Simulink is used to simulate the system at various sea conditions of different sig- nificant wave height and wave direction angles. T-he simulation results show that the improved RBF neural network adaptive sliding mode control is effective in the control of the fin stabilizer system and has strong robustness.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15