检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗维[1]
出 处:《北京大学学报(自然科学版)》2013年第1期88-94,共7页Acta Scientiarum Naturalium Universitatis Pekinensis
基 金:863计划(2011AA01A207)资助
摘 要:围绕翻译模型构建流程的瓶颈——词语对齐,着手翻译模型的增量式训练。在基于无监督学习的词语对齐模型的基础上,提出一种基于初始化同时应用迭代训练收敛速度更快的online EM算法,以替换通常所用的batch EM算法,实现增量式训练。实验表明,所提出的方法既高效又能保证词语对齐质量和机器翻译质量。This study puts emphasis on the incremental training algorithm for word alignment, which is the bottleneck during the construction of translation model. Based on two unsupervised word alignment models, the author proposes an incremental training algorithm which is based on initialization and online EM algorithm. Experiments show that the proposed method is efficient and would not hurt the quality of word alignment and translation.
关 键 词:统计机器翻译 词语对齐 增量式训练 期望最大化 在线算法
分 类 号:TP391.2[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104