基于高斯和近似的扩展切片高斯混合滤波器及其在多径估计中的应用  被引量:6

Extension of SGMF Using Gaussian Sum Approximation for Nonlinear/Non-Gaussian Model and Its Application in Multipath Estimation

在线阅读下载全文

作  者:陈杰[1] 程兰[2] 甘明刚[1] 

机构地区:[1]北京理工大学自动化学院复杂系统智能控制与决策教育部重点实验室,北京100081 [2]太原理工大学信息工程学院,太原030024

出  处:《自动化学报》2013年第1期1-10,共10页Acta Automatica Sinica

基  金:国家自然科学基金(61120106010);国家杰出青年科学基金资助(60925011)资助~~

摘  要:全球卫星导航系统(Global navigation satellite system,GNSS)信号的多径估计问题实际上是条件线性状态空间模型下的状态估计问题.根据高斯和理论提出了适用于非高斯噪声环境的扩展切片高斯混合滤波(Extension of sliced Gaussian mixture filter,ESGMF)算法.该算法将非高斯噪声的状态概率密度函数(Probability density function,PDF)表示为高斯和的形式,将ESGMF通过一组并行的切片高斯混合滤波器(Sliced Gaussian mixture filter,SGMF)来实现.同时,在ESGMF算法中利用粒子滤波(Particle filter,PF)中重采样的思想对成指数增加的状态预测PDF的高斯混合个体进行约简,以提高贝叶斯推理的效率.该算法可以获得非高斯噪声下状态PDF的迭代解析表达式.最后,将ESGMF应用于GPS多径参数估计,仿真结果表明,ESGMF算法的估计精度优于基于PF和扩展卡尔曼滤波(Extended Kalman filter,EKF)的算法.The multipath estimation of global navigation satellite system (GNSS) signal is actually the state estimation of nonlinear/non-Gaussian systems. The extension of sliced Gaussian mixture filter (ESGMF) based on Gaussian sum approximation is proposed for the state estimation of nonlinear/non-Gaussian state space, and the probability density function (PDF) expression of states is derived recursively for a time varying system. Resampling is applied to the prediction PDF to reduce the complexity of Bayesian inference. The simulation result of multipath estimation with ESGMF shows that the ESGMF algorithm performs better in accuracy than the algorithms based on particle filter (PF) and extended Kalman filter (EKF).

关 键 词:非高斯噪声 高斯和 概率密度函数 切片高斯混合滤波器 多径估计 

分 类 号:TN967.1[电子电信—信号与信息处理] TP13[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象