基于BVP算法的旋转倒立摆动自动起摆动控制  被引量:3

Auto-Swing up Control by BVP Arithmetic for the Rotational Inverted Pendulum

在线阅读下载全文

作  者:于占东[1] 王刚[1] 王显峰[1] 

机构地区:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001

出  处:《控制工程》2013年第1期46-50,共5页Control Engineering of China

基  金:国家自然科学基金(60804009);教育部高等学校博士点专项基金(20070217034)

摘  要:针对旋转倒立摆自动起摆的控制问题,提出了基于BVP算法的自动起摆控制策略。该方法将倒立摆起摆控制问题转化成求解非线性方程的两点边值问题(Two-point BoundaryValue Problem BVP),构造了含参变量具有傅立叶级数形式的起摆力矩函数,将力矩函数代入倒立摆系统,利用Matlab工具箱中的bvp4c函数求解两点边值条件,获得起摆过程的起摆控制的时间序列。基于BVP算法的起摆控制的求解,本质上属于开环前馈控制。为了抑制参数摄动,进行了平衡点附近的稳摆控制设计。稳摆设计是针对系统模型不稳定性和非最小相位特性分别进行的。对起摆、稳摆及其切换过程进行了仿真和实验研究,验证了所提出的自动起摆控制策略的有效性。The swing-up problem of the rotational inverted pendulum is discussed, and the auto-swing up control strategy based on BVP arithmetic is presented. The swing-up control programming from hanging to the upright position can be transformed into the two- point boundary value problem (BVP) of nonlinear systems. According to the boundary conditions of the swing-up process, the control torque function of Fouries series form with free parameters is constructed. The BVP is solved with the bvp4c function in Matlab toolbox, and the control torque sequence is obtained. The swing-up process is open-loop feedforward control essentially. In order to inhibition parameters perturbation, the dosed-loop stabilizing control is designed around the upright position for the inverted pendulum with unsta- ble zero-dynamics. The result of simulation and experiment for swing-up, stabilizing and switching process of inverted pendulum illus- trates the effectivity of the control strategy,

关 键 词:旋转倒立摆 两点边值问题 起摆控制 非最小相位 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象