检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张国亮[1]
出 处:《机床与液压》2013年第1期157-162,共6页Machine Tool & Hydraulics
基 金:国家自然科学基金资助项目(60805021);福建省高等学校杰出青年科研人才培育计划资助项目(JA10006);华侨大学基本科研业务费专项基金资助项目(JB-SJ1003)
摘 要:路径规划是移动机器人技术中的一个重要课题,而动态环境中的路径规划问题则是该领域内一个富有挑战性的研究方向,它在自主移动机器人、自治水下机器人和星球探索机器人等领域具有广泛的应用前景。综述了动态环境中移动机器人路径规划研究的主要内容及其发展动态,从算法策略的角度,将该问题概括为基于智能计算的路径规划,基于行为、学习心理的路径规划,随机采样路径规划和混合路径规划。具体分析了各种算法的原理,指出其优缺点和有待进一步研究的问题,并提出一些解决思路。Path planning is one of the important fields in mobile robot technology. Furthermore, path planning for mobile robot under dynamic environment is a challenging research topic in this field, which has many promising applications such as autonomous mobile robot, autonomous underwater vehicle and planet exploring robot. The path planning methods under dynamic environment in last several years were surveyed. Based on algorithm classification, it was summarized into four classes: intelligence computation based, behavior and learning based, random based and hybrid based approaches. The basic theories of the path planning methods were intro- duced. The advantages and limitations of the methods were pointed out. Finally, existing problems and future research issues were proposed.
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.73.179