检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李鑫川[1,2] 徐新刚[1] 王纪华 武洪峰[3] 金秀良[1] 李存军[1] 鲍艳松[2]
机构地区:[1]北京农业信息技术研究中心/国家农业信息化工程技术研究中心,北京100097 [2]南京信息工程大学大气物理学院,南京210044 [3]黑龙江农垦科学院科技情报研究所,哈尔滨150036
出 处:《农业工程学报》2013年第2期169-176,I0007,共9页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金(41001244);国家科技支撑计划(2012BAH29B01;2012BAH29B04);北京市自然科学基金(4112022)
摘 要:环境星影像具有较高的时间和空间分辨率,利用其时序遥感数据进行作物信息提取优势明显。该文以黑龙江垦区友谊农场作物为研究对象,利用2010年6月至9月共10景HJ-CCD数据进行作物种植分类信息提取。首先,通过SPLINE算法对云影响区域插值去噪,重构时间序列影像数据;其次,通过分析试验区主要作物的光谱和植被指数时序变化特征,构建基于决策树分层分类的主要作物遥感分类模型,成功提取了黑龙江友谊农场大豆、玉米和水稻的种植信息,分类总体精度达到96.33%。同时,将分类结果同基于时间序列植被指数影像的支持向量机和最大似然法分类结果相比较,结果表明,决策树分类效果最好,支持向量机次之,最大似然分类较差。研究表明,通过去云处理后构建的时间序列HJ卫星遥感影像,结合作物的光谱和典型植被指数时序变化特征,借助于决策树分类方法能够有效提高黑龙江垦区主要种植作物分类的准确性和精度。Time-series satellite images can reflect the seasonal variation from vegetation on land surface, and have better performance than single-temporal image for vegetation classification. Multi-temporal satellite images such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) have been widely used for crop classification throughout the growth season, but exhibit some limitations due to lower spatial resolution. On the other hand, some satellite imagery data with medium- resolution (such Landsat TM) and high-resolution (such QuickBird) also display some weaknesses thanks to lower temporal resolution. Environment Satellites HJ-1A/B of China have a better spatial resolution of 30 m than MODIS and AVHRR, and a higher temporal resolution of 2 days. So it is noticeable to use the time-series images from HJ satellites for crop classification. @@@@In this paper, selecting the largest farm, Youyi Farm in Nongken Region, Heilongjiang Province, China as an example, ten HJ-CCD time-series images from June to September 2010 were used to classify crops in the farm. After atmospheric and geometric corrections, SPLINE algorithm was applied to remove cloud in images for reconstructing time-series images. By collecting three main crops (soybean, rice and corn) ground truth data with Global Positioning Systems (GPS) in fields, the band reflectance of Red and NIR, and vegetation indices of NDVI and EVI with temporal changes were extracted. The red band reflectance of rice between in June 2nd to July 12th and August 26th to September 1st had significant difference between rice with others crops. The EVI of corn was less than soybean from July 12th to September 1st. After analyzing the images through serial threshold division, masking treatment, assisting with background data and expert knowledge, the decision tree classified arithmetic was established. Then, support vector machine (SVM) and maximum likelihood supervised classification method were also us
关 键 词:遥感 作物 分类 时间序列分析 决策树 HJ-CCD
分 类 号:S127[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38