检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廉美琳[1] 陈泽宇[2] 顾志华[1] 徐晓慧[1] 张金龙[1]
机构地区:[1]南京师范大学电气与自动化工程学院,江苏南京210042 [2]华中科技大学机械科学与工程学院,湖北武汉430074
出 处:《南京师范大学学报(工程技术版)》2012年第4期6-10,共5页Journal of Nanjing Normal University(Engineering and Technology Edition)
基 金:江苏省自然科学基金(BK2009406)
摘 要:针对汽油机怠速工况的非线性、时变性和不确定性,传统PID控制难以获得理想控制效果的问题,提出一种基于模糊神经网络的PID控制方法,将模糊控制、神经网络与PID控制相结合,给出了BP神经网络模型,采用3层前向网络,动态BP算法,利用神经网络的自学习和自适应能力,实时调整网络的权值,改变PID控制器的控制参数,整定出一组适用于PID控制的kp、ki、kd参数,实现汽油机怠速PID控制的自适应和智能化控制.实验结果表明,采用BP神经网络整定的PID控制,控制响应快、鲁棒性强,可减小怠速波动,提高汽油机怠速的稳定性.In view of the existing non-linearity, time-variation and unsteadiness of idling process in gasoline engine and the difficulty in obtaining a good performance by traditional PID control, an idling PID control based on fuzzy neural network is proposed. A control platform combining fuzzy control, neural network and PID control is applied in idling control of gasoline engine. We set up a radial basis function(BP) neural network model. The dynamic BP algorithms of three layers forward networks is adopted. By the function of self-learning and adaptability the weights of BP network and the parameters of PID are adjusted in real time to a group of kp ,kl and kd suitable for the idling control, therefore the self- adaptation and intelligent control of the engine idling PID control can come true. The experimental result shows that PID controller based on BP neural network adjusting has such better control performance as quick response and good robustness, and decrease idling speed fluctuation and that it improves obviously the stability of idling operation.
分 类 号:TH165[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117