不同插值方法对CORS高程时间序列的影响分析  被引量:15

Effect analysis of different interpolation methods on height time series of CORS

在线阅读下载全文

作  者:田慧[1,2] 程鹏飞[1] 秘金钟[1] 

机构地区:[1]中国测绘科学研究院,北京100830 [2]辽宁工程技术大学测绘与地理科学院,辽宁阜新123000

出  处:《测绘科学》2013年第1期16-17,46,共3页Science of Surveying and Mapping

基  金:国家基础测绘项目地心坐标系推广应用(No.B2551);863项目(2011AA120503863);中国测绘科学研究院基本科研业务费项目

摘  要:在CORS站高程时间序列的研究中,当连续缺失较多数据时,插值显得尤为重要。为了较好地解决这个问题,本文尝试采用正交多项式拟合的方法,分别利用正交多项式拟合、拉格朗日和三次样条等插值方法对高程时间序列进行插值,并对不同方法的插值结果进行了分析比较,验证了正交多项式拟合的可行性及有效性。结果表明:在高程时间序列插值中,三次样条插值结果较差;连续缺失3个点及以下时,正交多项式拟合、拉格朗日插值结果均较好,插值效果相当;随着缺失点数量的增加,正交多项式拟合结果要优于另2种方法。Interpolation method is of particularly importance when relatively more values are missing consecutively in the study of CORS time series of height component. In order to better solve this problem, the method of Orthogonal Polynomial Fitting was proposed. In this study, three interpolation methods, including Orthogonal Polynomial Fitting, Lagrange Interpolation and Cubic Spline In- terpolation, were used for the interpolating of height components in time series respectively, the results were also fully compared and analyzed, and verified the feasibility and effectiveness of Orthogonal Polynomial Fitting Method, which clearly shows that, in the inter- polation of height time series, Cubic Spline Method shows no advantage in either case, interpolation results of Lag-range Method and Orthogonal Polynomial Fitting are both good when 3 or below values are missing consecutively. With the increase of the number of missing values, Orthogonal Polynomial Fitting Method is better than the other two methods.

关 键 词:拉格朗日 三次样条 正交多项式 高程时间序列 CORS站 

分 类 号:TP391[自动化与计算机技术—计算机应用技术] P228[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象