基于数据驱动的气动加载系统在线建模方法  被引量:3

Online Modeling Method for Pneumatic Loading System Based on Data-driven

在线阅读下载全文

作  者:陈贵林[1] 刘砚[1] 徐文丽[1] 刘吉斯[1] 刘福才[1] 

机构地区:[1]燕山大学工业计算机控制工程河北省重点实验室,河北秦皇岛066004

出  处:《机床与液压》2013年第3期12-16,共5页Machine Tool & Hydraulics

基  金:国家高技术研究发展计划(863)资助项目;河北省自然科学基金资助项目(2010001320)

摘  要:气动加载系统具有严重非线性和参数不确定性,很难用精确的数学模型来描述,而在系统运行过程中,存在大量的输入输出数据,因此,提出一种基于数据驱动的气动加载系统在线建模方法。离线辨识阶段,基于Takagi-Sugeno模糊模型,采用减法聚类和模糊c-均值相结合的模糊聚类算法从输入输出样本数据中提取模糊规则,然后利用递推最小二乘法对后件参数进行辨识,得到离线模型;在线调参阶段,采用最小均方差算法在线修正模型线性参数,得到在线模型。基于VC++6.0软件开发平台,设计了在线建模程序,在气动变载荷摩擦磨损试验机上进行了实验研究。实验结果表明:该模型具有较高的辨识精度、较理想的泛化能力和跟踪能力,为建立气动加载系统的数学模型提供了一条新途径,同时也为气动加载系统的智能控制奠定了基础。Pneumatic loading system has the characteristics of serious nonlinearity and parameter uncertainty, it is difficult to de- scribe the system by accurate mathematical model. There are a large number of input/output data while the system is running. So an online modeling method based on data-driven was proposed for the pneumatic loading system. On the offline stage, subtractive cluste- ring and fuzzy c - means clustering (FCM) were combined to extract fuzzy rules from the input and output data, and then recursive least squares method was used to identify the consequent parameters. On the online stage, least mean square algorithm was adopted to adjust the parameters of the model. Based on VC++ 6.0 software development platform, online fuzzy modeling program was designed and tested on a pneumatic variable-loading friction and wear tester. The results show that the model has high identification accuracy, satisfactory generalization ability and tracking ability. It provides a new way to establish the mathematical model for pneumatic loading system. Furthermore, it lays foundation for the design of intelligent control algorithms for pneumatic loading system.

关 键 词:气动加载系统 数据驱动 T—S模糊模型 模糊聚类 气动变载荷摩擦磨损试验机 

分 类 号:TP271.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象