检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋勇强[1] 贠建民[1] 安志刚[1] 韩庆辉[1]
机构地区:[1]甘肃农业大学食品科学与工程学院,甘肃兰州730070
出 处:《食品工业科技》2013年第5期142-146,150,共6页Science and Technology of Food Industry
基 金:甘肃省教育厅科学研究基金资助项目(0902-06)
摘 要:以甘肃传统食醋酿造过程中分离得到的1株优势产酸醋酸菌A3为出发菌株,采用正交设计与人工神经网络模型相结合的方法优化其发酵条件以提高产酸量。用正交实验中的因素水平组合作为ANN的输入变量,用产酸量作为输出变量,正交实验数据作为建立BP网络模型的训练样本,另外两组实验(17号、18号)用于检验模型的泛化能力,并运用建立好的人工神经网络模型在正交实验分析基础上寻找最佳发酵条件。实验结果表明,该菌株A3醋酸发酵最佳条件为:初始乙醇浓度4.2%(v/v)、发酵温度30℃、起始pH6.4、发酵周期8d,在此条件下的产酸量明显高于正交实验中的最高产酸量,达到4.3086g/100mL。A bacterium strain A3 producing acetic acid was isolated from the traditional brewing process of Gansu vinegar.The optimization method based on orthogonal design coupled with artificial neural networks model(ANN) was employed to select fermentation conditions for increasing the yield of acetic acid.The combinations of factor and level in the orthogonal design were used as the input variables, and the content of acid as the output for building the ANN model.The sixteen tests data were used as BP architecture training samples,and two other test results( No.17 and No.18)were used to examine the generalization capability of the model.Finally,the established ANN was applied to the optimization of fermentation conditions.The results showed that the optimized fermentation conditions for acetic acid production of this Acetobacter A3 were found to be 4.2% (v/v)alcohol,30℃, pH6.4 and 8d fermentation time.Under the conditions,the content of acetic acid was superior to orthogonal test,increasing to 4.3086g/100mL.
关 键 词:醋酸菌 正交设计 人工神经网络模型 醋酸发酵条件 优化
分 类 号:TS205.5[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.126