检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学机械电子工程研究所,太原030024
出 处:《振动.测试与诊断》2013年第1期153-156,172,共4页Journal of Vibration,Measurement & Diagnosis
基 金:山西省自然科学基金资助项目(2011011026-3)
摘 要:针对现有支持向量机(support vector machines,简称SVM)在构造多类分类器的过程中存在计算费时、搜索率不高的问题,提出了一种新的SVM决策树设计算法。引入具有优良的全局搜索性能的粒子群算法,将其应用于优化决策树,构造出一种自适应性强、识别率高的多元分类器,实现SVM的有效多值分类。将其结果应用于齿轮箱故障诊断中,试验结果证明改进后的SVM构造方法的有效性和准确性。In order to solve the problem of consuming too much calculation time and low rate of searching in the construction process of multi-class classification of support vector machines(SVM),the fine global search performance of particle swarm is applied to the optimization of decision tree in order to construct a diverse classifier and ultimately achieve more effective multi-value classification for SVM.The improved SVM constructing method is proved more effective and accurate while being applied to gearbox fault diagnosis.
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69