检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《力学学报》2013年第2期297-301,共5页Chinese Journal of Theoretical and Applied Mechanics
基 金:国家自然科学基金(11132003;50779011);江苏省普通高校研究生科研创新计划(CX09B 155Z)资助项目~~
摘 要:基于比例边界有限元理论框架,通过采用连分式展开和引入辅助变量,将有限域的动力刚度矩阵和质量矩阵采用高阶的矩阵表示.采用改进的连分式法求解比例边界有限元方程中的动力刚度矩阵.通过增加连分式展开的阶数,该求解方法能包含动力分析的主要频率范围.针对结构自由度较多的系统当连分式阶数逐渐增大时,原连分式算法可能会造成矩阵运算病态的问题,提出采用改进的连分式算法能有效地提高数值计算稳定性.通过对一正八边形的自由振动分析及矩形平面的时域分析,算例结果表明改进算法的鲁棒性更强,适合大规模系统的动力分析.By using the continued-fraction solution and introducing auxiliary variables, the dynamic stiffness and mass matrices of bounded domains are expressed in high-order matrices. The formulation is based on an improved continued- fraction solution of the scaled boundary finite element equation in dynamic~ stiffness. This continued-fraction solution converges over the whole frequency range with increasing order of expansion. Compared to the original approach, it leads to numerically more robust for large-scale systems and arbitrarily high orders of expansion. The eigenvalue problem of a regular octagon is considered. Transient analysis of a bounded rectangular plane is also presented. The results of two numerical examples demonstrate that the proposed method is superior to the original approach and it is suitable for dynamic analysis of large-scale systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222