基于局部切空间排列与MSVM的齿轮箱故障诊断  被引量:15

Gearbox fault diagnosis based on local target space alignment and multi-kernel support vector machine

在线阅读下载全文

作  者:陈法法[1] 汤宝平[1] 苏祖强[1] 

机构地区:[1]重庆大学机械传动国家重点实验室,重庆400030

出  处:《振动与冲击》2013年第5期38-42,47,共6页Journal of Vibration and Shock

基  金:国家自然科学基金项目(51275546);重庆市自然科学杰出青年基金计划资助项目(CQ CSTC2011jjjq0006)

摘  要:针对齿轮箱故障特征重叠难以有效分离问题,提出基于局部切空间排列与多核支持向量机的齿轮箱故障诊断模型。在由振动信号时域统计指标及内禀模态分量能量构造的多元特征空间中,据局部切空间排列算法对多元特征进行非线性降维处理,得到初始低维流形结构,获取最优敏感特征向量;将该特征向量输入至多核支持向量机进行学习训练与故障辨识。局部切空间排列能克服传统降维方法的不足,多核支持向量机可实现复杂故障高精度、自动化智能诊断。通过齿轮箱故障模拟实验验证该方法的有效性。In consideration of the overlapping of gearbox fault features and the difficulty to distinguish these features, a gearbox fault diagnosis model based on local target space alignment and multi-kernel support vector machine was proposed. In the vibration feature space constructed by time domain statistic indices and intrinsic mode energy value, the nonlinear muhi-dimensionality reduction based on local target space alignment was introduced to get the initial lowdimensional manifold feature value, then the low-dimensional feature vector which retains the fault characteristics was regarded as the input feature vector of the multi-kernel support vector machine for gearbox fault classification. Local target space alignment can overcome the shortcoming of traditional reduction method, and the multi-kernel support vector machine can realize the high-precision automatic intelligent diagnosis for gearbox. The gearbox fault diagnosis experiment shows the effectiveness of this novel model.

关 键 词:局部切空间排列 多核学习 支持向量机 齿轮箱 故障诊断 

分 类 号:TH132[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象