大型风电场超短期风电功率预测  被引量:6

Ultra-Short-Term Wind Power Prediction for Large-Scaled Wind Farms

在线阅读下载全文

作  者:廖志民[1] 孙晔[1] 张欢 

机构地区:[1]呼和浩特供电局,内蒙古呼和浩特010050 [2]内蒙古自治区特种设备检验院,内蒙古呼和浩特010031

出  处:《电网与清洁能源》2013年第2期75-79,85,共6页Power System and Clean Energy

摘  要:针对大规模风电场风电功率的非线性特性,采用最小二乘支持向量机(LS-SVM)的预测模型。由于LS-SVM的参数选择直接影响着模型的预测精度,于是采用一种基于量子粒子群优化方法来选择模型的超参数。为了弥补模型损失的鲁棒性,通过给每个样本误差不同的权系数,建立了具有良好泛化性能的WLS-SVM回归模型,从而进一步提高了模型预测的精度。本文提出一种基于量子粒子群优化(Quantumbehaved Particle Swarm Optimization,QPSO)参数选择的加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLS-SVM)的超短期风电功率预测模型。应用上述方法对内蒙古地区大型风电场进行了预测,结果证明了该方法的有效性。For large-scale wind farm wind power nonlinear characteristics, we use least squares support vector machine prediction models. As the LS-SVM parameter selection directly affects the precision of the model, this paper uses a method based on quantum particle swarm optimization to choose the model of super parameters. To compensate loss of robustness of the model, by giving different weights to each sample error coefficient of this paper, a good generalization performance of the WLS-SVM regression model is established to further improve the model prediction accuracy. This paper presents an ultrashort term wind power prediction model which is based on the quantum particle swarm optimization (Quantum-behaved Particle Swarm Optimization, QPSO) parameters of the weighted least squares support vector machine (Weighted Least Squares Support Vector Machine, WLS-SVM). The method as described in the paper has been applied in the wind power prediction in largescaled wind farms in Inner Mongolia, and the actual results prove effectiveness of the method.

关 键 词:量子粒子群优化 最小二乘支持向量机 超短期风电功率预测 鲁棒性 

分 类 号:TM615[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象