检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王春峰[1] 郭华[1] 房振明[1] 黄晓彬[1]
出 处:《系统工程》2013年第2期23-29,共7页Systems Engineering
基 金:国家自然科学基金资助项目(71271146;70771076);长江学者与创新团队发展计划项目(IRT1028)
摘 要:考虑中国股市指数收益率分布和波动的非对称性结构,采用偏t分布拟合收益率的有偏分布形态,利用RS-捕捉波动率的杠杆效应,并构建ARFIMA-GARCH和SKST-RS-模型分别预测RS-和刻画收益率波动的动态结构,进而改进VaR和ES并测度卖空限制市场的下侧风险。通过Kupiec LR和动态分位数检验,实证分析了ES和VaR的风险管理效果。结果表明:基于日内高频收益的SKST-RS-模型的VaR预测能力强于SKST-RV模型和基于日间收益率的GARCH类模型;在VaR估计市场极端风险失效时,ES能够有效地对尾部极端风险进行管理。Considering the asymmetric structure of index return^s distribution and volatility in Chinese stock market, we use skew-t distribution to fit index return, apply RS- to capture leverage effect of volatility, construct ARFIMA-GARCH model and SKST-RS- model to forecast RS-, to depict the dynamics of volatility respectively, then calculate VaR and ES to measure down-side risk in the market with the feature of short-sale constraint. Furthermore, we analyze the effect of VaR and ES by Kupiec LR test and Dynamic quantile regression. The results show that SKST-RS- model based on high- frequency data performs batter in forecasting VaR than SKST-RV and GARCH type models based on low-frequency data. When VaR fails to estimate extreme risk in market, ES could manage extreme risk of tail efficiently.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15