检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《东北大学学报(自然科学版)》2013年第4期457-460,共4页Journal of Northeastern University(Natural Science)
基 金:辽宁省自然科学基金资助项目(201102070)
摘 要:在时滞是时变的且属于一个区间的情况下,研究了线性时滞系统的稳定性问题.基于二次类型的Lyapunov-Krasovskii泛函,利用积分的凸组合和Jensen积分不等式,给出了一个新的依赖时滞区间的稳定性判别方法.把时滞区间分段,在每段内采用适当的不等式对Lyapunov-Krasovskii泛函导数的积分项系数进行放大,避免了在不同区间上使用统一的不等式,从而减少了使用凸组合方法带来的保守性.用理论分析和数值算例证明了所得结果比现有结果具有更小的保守性.On the assumption that the delay is time-varying and ranges in an interval, the stability of linear systems with a delay was studied. Based on a Lyapunov-Krasovskii functional of quadratic type, a new stability criterion dependent on the delay range was proposed by employing the convex combination of integrals and Jensen' s integral inequality. Partitioning the delay range into segments, the coefficients of integral terms in the derivative of the Lyapunov-Krasovskii functional were enlarged by using appropriate inequalities for each segment. The conservatism of the convex combination method was reduced due to not using unified inequality for different segments. Theoretical analysis and numerical examples showed that the result obtained had less conservatism than that of some existing ones.
关 键 词:时变时滞 稳定性 Lyapunov—Krasovskii泛函 线性矩阵不等式 积分不等式
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104