检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹婷婷[1] 窦英[2] 王莹[3] 宋焕禄[1] 庞小一[1] 陶菲菲[1] 张秋晨[1]
机构地区:[1]北京工商大学食品学院,北京100048 [2]天津科技大学理学院化学系,天津300457 [3]吉林省产品质量监督检验院,吉林长春130022
出 处:《食品与发酵工业》2013年第3期176-178,共3页Food and Fermentation Industries
摘 要:选用不同厂家的红薯淀粉、马铃薯淀粉和玉米淀粉共112个样品,利用短波近红外光谱技术对淀粉种类进行鉴别。分别采用马氏距离判别法、C-支持向量机(C-SVM)、ν-支持向量机(ν-SVM)建立淀粉种类鉴别的短波近红外光谱模型;并对比多元散射矫正、平滑、一阶微分、二阶微分等多种预处理方法后的建模结果。结果表明:同时使用平滑、多元散射矫正、一阶微分3种预处理方法后,ν-SVM分类模型的效果最佳;训练集交叉验证正确率为100%,测试集正确率也达到100%。该模型快速准确无损的鉴别淀粉种类是可行的。A method of starch category analysis was developed using Short-wave Near-infrared (NIR) spectroscopy. All 112 samples were obtained from different manufacturers of sweet potato starch, potato starch and corn starch. The Short-wave NIR models were established using mahalanobis distance discriminant, C-Support vector machine (C-SVM) and v-Support vec- tor machine (v-SVM). The various different pretreated methods (multiplicative scatter correction (MSC), smooth, first-deriva- tion and second-derivation of spectra data were applied. The results indicated that v-SVM got the best results after MSC, smooth and first-derivation pretreatments. The correct ratio of the training set and the testing set is 100% and 100%. The re- suits showed the method for simultaneous, non-destructive analysis in determination of starch category is reliable.
关 键 词:短波近红外光谱技术 淀粉 马氏距离判别 ν-支持向量机(ν-SVM) 定性分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.236