A LIM Domain Protein from Tobacco Involved in Actin-Bundling and Histone Gene Transcription  被引量:2

A LIM Domain Protein from Tobacco Involved in Actin-Bundling and Histone Gene Transcription

在线阅读下载全文

作  者:Danièle Moes Sabrina Gatti CEline Hoffmann Monika Dieterle Flora Moreau Katrin Neumann Marc Schumacher Marc Diederich Erwin Grill Wen-Hui Shen André Steinmetz Cldment Thomas 

机构地区:[1]Centre de Recherche Public-SantE, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg [2]Laboratoire de Biologie Moleculaire et Cellulaire du Cancer, HSpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg [3]Lehrstuhl for Botanik, Technische Universitat Munchen, EmiI-Ramann-StraBe 4, D-85354 Freising, Germany [4]Jnstitut de Biologie Moleculaire des Plantes du CNRS, 12, rue du Général Zimmer, F-67084 Strasbourg Ceédex, France

出  处:《Molecular Plant》2013年第2期483-502,共20页分子植物(英文版)

摘  要:The two LIM domain-containing proteins from plants (LIMs) typically exhibit a dual cytoplasmic-nuclear dis-tribution, suggesting that, in addition to their previously described roles in actin cytoskeleton organization, they partici-pate in nuclear processes. Using a south-western blot-based screen aimed at identifying factors that bind to plant histone gene promoters, we isolated a positive clone containing the tobacco LIM protein WLIM2 (NtWLIM2) cDNA. Using both green fluorescent protein (GFP) fusion-and immunology-based strategies, we provide clear evidence that NtWLIM2 local-izes to the actin cytoskeleton, the nucleus, and the nucleolus. Interestingly, the disruption of the actin cytoskeleton by latrunculin B significantly increases NtWLIM2 nuclear fraction, pinpointing a possible novel cytoskeletal-nuclear crosstalk. Biochemical and electron microscopy experiments reveal the ability of NtWLIM2 to directly bind to actin filaments and to crosslink the latter into thick actin bundles. Electrophoretic mobility shift assays show that NtWLIM2 specifically binds to the conserved octameric cis-elements (Oct) of the Arabidopsis histone H4A748 gene promoter and that this binding largely relies on both LIM domains. Importantly, reporter-based experiments conducted in Arabidopsis and tobacco proto-plasts confirm the ability of NtWLIM2 to bind to and activate the H4A748 gene promoter in live cells. Expression studies indicate the constitutive presence of NtWLIM2 mRNA and NtWLIM2 protein during tobacco BY-2 cell proliferation and cell cycle progression, suggesting a role of NtWLIM2 in the activation of basal histone gene expression. Interestingly, both live cell and in vitro data support NtWLIM2 di/oligomerization. We propose that NtWLIM2 functions as an actin-stabilizing protein, which, upon cytoskeleton remodeling, shuttles to the nucleus in order to modify gene expression.The two LIM domain-containing proteins from plants (LIMs) typically exhibit a dual cytoplasmic-nuclear dis-tribution, suggesting that, in addition to their previously described roles in actin cytoskeleton organization, they partici-pate in nuclear processes. Using a south-western blot-based screen aimed at identifying factors that bind to plant histone gene promoters, we isolated a positive clone containing the tobacco LIM protein WLIM2 (NtWLIM2) cDNA. Using both green fluorescent protein (GFP) fusion-and immunology-based strategies, we provide clear evidence that NtWLIM2 local-izes to the actin cytoskeleton, the nucleus, and the nucleolus. Interestingly, the disruption of the actin cytoskeleton by latrunculin B significantly increases NtWLIM2 nuclear fraction, pinpointing a possible novel cytoskeletal-nuclear crosstalk. Biochemical and electron microscopy experiments reveal the ability of NtWLIM2 to directly bind to actin filaments and to crosslink the latter into thick actin bundles. Electrophoretic mobility shift assays show that NtWLIM2 specifically binds to the conserved octameric cis-elements (Oct) of the Arabidopsis histone H4A748 gene promoter and that this binding largely relies on both LIM domains. Importantly, reporter-based experiments conducted in Arabidopsis and tobacco proto-plasts confirm the ability of NtWLIM2 to bind to and activate the H4A748 gene promoter in live cells. Expression studies indicate the constitutive presence of NtWLIM2 mRNA and NtWLIM2 protein during tobacco BY-2 cell proliferation and cell cycle progression, suggesting a role of NtWLIM2 in the activation of basal histone gene expression. Interestingly, both live cell and in vitro data support NtWLIM2 di/oligomerization. We propose that NtWLIM2 functions as an actin-stabilizing protein, which, upon cytoskeleton remodeling, shuttles to the nucleus in order to modify gene expression.

关 键 词:ACTIN BY-2 CYTOSKELETON DNA-BINDING histone genes LIM Nicotiana tabacum promoter regulation trans-acting factors. 

分 类 号:Q51[生物学—生物化学] Q255

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象