基于小波和回声状态网络的交通流多步预测模型  被引量:7

Multi-step traffic flow prediction model based on wavelet and echo state network

在线阅读下载全文

作  者:杨飞[1,2,3] 方滨兴[1,2] 王春露[1,2] 左兴权[1,2] 李丽香[1,2] 平源[1,2] 

机构地区:[1]北京邮电大学计算机学院,北京100876 [2]北京邮电大学可信分布式计算与服务教育部重点实验室,北京100876 [3]南京熊猫电子股份有限公司,南京210002

出  处:《吉林大学学报(工学版)》2013年第3期646-653,共8页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(60973009;61170269);国家科技支撑计划项目(2009BAG13A01);国家教育部新世纪优秀人才支持计划项目(NCET-10-0239);国家教育部霍英东教育基金会项目(121062);中央高校基本科研业务费项目(2009RC0208)

摘  要:针对交通流的含噪混沌特征,提出了一种基于小波回声状态网络的交通流多步预测模型。该模型利用小波多尺度分解方法,屏蔽了噪声成分对交通流动力学特性的干扰,同时提取了占有交通流绝大部分能量的混沌低频成分。在采用多路分量并行预测的方式下,充分发挥了回声状态网络对混沌低频分量的强大多步预测能力,从而保障了交通流多步预测的精度。对北京市西直门桥的实测交通流的预测结果表明:该模型的多步预测精度比传统的回声状态网络模型有了较大幅度的提升,在保证预测精度的前提下,最大可预测的步长也相应的增加。In light of the noisy chaotic characteristics of traffic flow, a new multi-step traffic flow prediction model based on wavelet and echo state network was proposed. Utilizing multi-scale decomposition method of wavelet, the proposed model restricts the interference of noisy components to the dynamic behavior of the traffic flow; meanwhile it extracts the chaotic low-frequency component, which possesses most of the energy of traffic flow. In predicting the multi components concurrently, the strong prediction capacity of echo state network for chaotic low-frequency component was utilized effectively to ensure the accuracy of multi-step traffic flow prediction. The results of prediction of the real traffic flow in Xizhimen Bridge of Beijing show that the prediction accuracy is significantly improved by the propos echo state network model. Under the condition step is also increased by the proposed model. Key words: engineering of communications and ed multi-step model in comparison with the traditional of high prediction accuracy, the maximum predictable transportation step is also increased by the proposed model.

关 键 词:交通运输系统工程 交通流预测 回声状态网络 混沌吸引子 相空间重构 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象