检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘遵雄[1] 黄志强[1] 郑淑娟[2] 张恒[1]
机构地区:[1]华东交通大学信息工程学院,江西南昌330013 [2]江西财经大学科研处,江西南昌330013
出 处:《计算机工程与设计》2013年第6期1998-2003,共6页Computer Engineering and Design
基 金:国家自然科学基金项目(61065003);教育部人文社会科学研究规划基金项目(10YJC630379);江西省自然科学基金项目(2010GZS0034)
摘 要:逻辑回归已广泛应用于财务危机建模,但是一定程度存在过拟合问题。为了避免建模出现上述问题,提出了基于L1正则化逻辑回归的财务预警模型。该模型是一种稀疏模型,能同时实现变量选择和参数估计,具有较强的鲁棒性。同时,针对L1正则化逻辑回归问题的求解,提出了一种高效的基于内点法的求解算法。结合沪深股市A股制造业上市公司进行实证分析,分析结果表明,L1正则化逻辑回归模型在预报精度、经济解释性等方面明显优于其他逻辑回归模型,并且提出的内点法与其它求解算法相比具有一定的优越性。Logistic regression (LR) is widely applied in building financial early-warning model, but to a certain extent, it has o ver-fitting problem. To avoid this problem, the financial early-warning model based on L1 regularized logistic regression is put forward. This model is a sparse model, can select variables and estimate coefficients simultaneously, and has strong robustness. At the same time, aiming at the solving of L1 regularized logistic regression problem, an efficient algorithm based on interiorpoint method is presented. Experiments are implemented on the financial data of A share manufacturing listed companies of the Shanghai and Shenzhen stock markets. The experimental results show that L1 regularized logistic regression model is apparently superior to other LR model in the accuracy of prediction, the economic interpretation, etc. Moreover, compared to other algo- rithms, the proposed interior-point algorithm has some superiority.
关 键 词:逻辑回归 过拟合 L1正则化 财务预警 稀疏模型 内点法
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69