检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国人民解放军第二炮兵工程大学指挥信息系统工程系,陕西西安710025
出 处:《智能系统学报》2013年第2期168-176,共9页CAAI Transactions on Intelligent Systems
基 金:国家"863"计划资助项目(2006AA04Z258)
摘 要:为了解决机器人在未知环境下的目标跟踪问题,提出了一种基于粒子滤波的机器人同时定位、地图构建与目标跟踪方法.该方法采用Rao-Blackwellized粒子滤波器对机器人位姿状态、标志柱分布和目标位置同时进行估计.该方法中,粒子群的总体分布情况表征机器人位姿状态,而每个粒子均包含2类EKF滤波器,其中一类用来完成对标志柱分布的估计,另一类用来完成对目标状态的估计,粒子的权值则由粒子状态相对于标志柱和目标状态2类相似度共同产生.通过仿真和实体机器人实验验证了该方法的有效性.The proposed research paper examines a simultaneous localization, mapping, and object tracking method. The examination was in part based on a particle filter that allows a robot to track an object in an unknown environment. This method utilizies the Rao-Blackwellized particle filting to estimate the pose of robot, landmarks distribution, and object position simultaneously. The general distribution of a particle swarm represents the pose of a robot, and each particle includes two kinds of Extended Kalman Filter (EKF). One EKF estimates distribution of landmarks, while the other EKF estimates the state of the object. The weight of particle is determined by the combination of two likelihoods, one is the likelihood between particle state and landmarks, and the other is the likelihood between particle state and object state. The results of the research indicate the valid robot experimentation and simulation, confirm the proposed research approach is very effective.
关 键 词:RAO-BLACKWELLIZED粒子滤波 同时定位与地图构建 目标跟踪
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222