Pachpatte离散不等式的一个推广  被引量:1

Generalizations of Pachpatte's Discrete Inequality

在线阅读下载全文

作  者:黄裕建[1] 

机构地区:[1]广东轻工职业技术学院经济系,广州510300

出  处:《重庆师范大学学报(自然科学版)》2013年第4期98-102,共5页Journal of Chongqing Normal University:Natural Science

基  金:广东省教育科学"十一五"规划资助项目(No.2010tjkl37)

摘  要:本文主要研究了Pachpatte不等式的推广及其类似不等式,也就是经典的Hilbert不等式的变式。通过引进-λ齐次函数K(x,y)和两对共轭指数(p,q),(r,s),(1/p)+(1/p)=1,(1/r)+(1/s)=1,经过巧妙配方,再运用一些经典的不等式(例如Hlder不等式、Young不等式与Jensen不等式)技巧和一定的实分析方法来估算权函数,建立了一系列Pach-patte离散不等式的推广及类似形式,包括非负凸、次可乘的可测实值函数下的各种不等式.该结论综合运用了Hilbert不等式和Pachpatte不等式的推演技巧,将以前不含共轭指数或只含一对共轭指数的Pachpatte不等式推广到含两对共轭指数与参量化的不等式,统一了部分已有文献的研究成果,使Pachpatte不等式的研究上升到一个更高的层次。作为应用,对齐-λ次函数K(x,y)取了2个特殊的函数得到了一些有趣的不等式。The present paper is devoted to study the Pachpatte's inequality and the similar inequality,which is the variant of classical Hilbert inequality.By introducing the homogeneous function K(x,y) of-λdegree and two pairs of conjugate exponents(p,q),(r,s),(1/p) +(1/p) =1,(1/r) +(1/s) =1,by the proper identical transformation,and then using techniques of several classical inequalities(e.g.Hlder's inequality,Young's inequality and Jensen's inequality) and methods of real analysis to estimate the weight function,a series of Pachpatte's discrete inequalities and similar forms are obtained,which included a variety of inequality under the non-negative convex sub-multiplicative measurable real-valued function.This conclusion is the integrated use of the deduction of Hilbert's inequality and Pachpatte's inequality,putting non-conjugated exponents or only one pair of conjugate exponents of Pachpatte's inequality previously into the inequality of two pairs of conjugate exponents and multi-parameter,which unified the research of some literature,this makes the study of Pachpatte's inequality to rise to a higher level.As applications,we take two special functions of the homogeneous function K(x,y),and some interesting inequalities are given.

关 键 词:HOLDER不等式 YOUNG不等式 JENSEN不等式 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象