检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学经济与金融学院,陕西西安710061
出 处:《系统工程》2013年第7期1-7,共7页Systems Engineering
基 金:国家自然科学基金资助项目(70771087);教育部社科规划项目(12YJA790184);教育部人文社会科学研究规划项目(10YJA790165)
摘 要:目前,我国基于交易上报制度和静态数据挖掘的可疑金融交易识别方法存在着监测覆盖面窄、识别时效性差两大瓶颈问题。一种可行的改进是在现有方法中引入对可疑金融交易的动态识别,其中需解决的关键问题是如何及时有效地从大规模动态数据集中发现相应的可疑交易特征。设计一种基于数据流频繁子图挖掘的可疑关联特征动态识别算法,并用实验证明该算法的可行性和有效性。At present, the limitation in real-time and coverage is the main problem that troubles the suspicious financial transaction recognition based on transactions reported system and static data mining techniques in our country. To overcome this limitation, dynamic recognition of suspicious financial transaction can be adopted. In this way, how to recognize the characteristics of suspicious transactions in large scale data set efficiently must be figured out. Hence, a new algorithm of recognizing suspicious relationship in transaction records based on frequent sub-graph mining of data stream is proposed in this paper, and it is proved to be feasible and efficient by the experiments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.215.114