一类三次Hamilton系统的Abel积分的渐近性态  

Asymptotic Property of the Abel Integral in one Cubic Hamilton System

在线阅读下载全文

作  者:郭丽伟 

机构地区:[1]锦州师范高等专科学校教务处,辽宁锦州121000

出  处:《沈阳工程学院学报(自然科学版)》2013年第3期275-278,共4页Journal of Shenyang Institute of Engineering:Natural Science

摘  要:当今分岔理论研究的热门课题之一,是确定Abel积分I(h)的零点个数上界问题.这一问题和确定Hamilton向量场在多项式扰动下的极限环个数有着密切关系.而求得I(h)在定义域端点的渐近展式,对研究I(h)的性质起着重要作用.这里利用常微分方程解析理论,讨论一类三次Hamilton系统在三次多项式扰动下的Abel积分的渐近性态,求得I(h)在定义域端点的渐近展式.Nowadays,to determine the upper bound of the number of zero of the Abel integral I(h) is one of the most popular subjects in bifurcation theory research.The subject has a close relation with determining the number of limit cycles of Hamilton vector field with polynomial perturbation.To find the progressive extensible formula of I(h)at the endpoint of domain has a significant role in research the nature of I(h).Using ordinary differential equations theory,the article discussed the asymptotic behavior of Abel integral with the cubic polynomial perturbation of a class of cubic Hamilton system and found the progressive extensible formula of I(h) at the endpoint of domain.

关 键 词:HAMILTON系统 ABEL积分 PICARD-FUCHS方程 渐近展式 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象