检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹婷婷[1] 窦英[2] 王莹[3] 刘野[1] 段紫怡[1] 张秋晨[1]
机构地区:[1]北京工商大学食品学院,北京100048 [2]天津科技大学理学院化学系,天津300457 [3]吉林省产品质量监督检验院,吉林长春130022
出 处:《食品工业科技》2013年第17期317-319,共3页Science and Technology of Food Industry
摘 要:不同厂家的红薯淀粉、马铃薯淀粉和玉米淀粉共112个样品,利用近红外光谱技术对淀粉种类进行识别。分别采用马氏距离判别法、C-支持向量机(C-SVM)、ν-支持向量机(ν-SVM)建立淀粉种类鉴别的近红外光谱模型;并对比多元散射矫正、平滑、一阶微分、二阶微分等多种预处理方法后的建模结果。结果表明:同时使用平滑、多元散射矫正、微分三种预处理方法后,C-SVM和ν-SVM分类模型的效果最佳;训练集交叉验证正确率均为98.72%,测试集正确率均达到100%。实验结果表明,该模型快速准确无损的鉴别淀粉种类是可行的。A method of starch category analysis was developed by using Near-infrared (NIR)spectroscopy.All the 112 samples were obtained from different manufacturers of sweet potato starch, potato starch and corn starch.The N IR models were established using mahalanobis distance discriminant, C-Support vector machine(C-SVM) and υ-Support vector machine (υ-SVM).The various different pretreated methods (multiplicative scatter correction (MSC) ,smooth,first-derivation and second-derivation of spectra data were applied.The results indicated the C-SVM and υ-SVM models had most advantages simultaneously used MSC,smooth and derivation.The correct ratio of the training set and the testing set was 98.72% and lO0%.The results showed the method for simultaneous, non-destructive analysis of starch category was reliable.
关 键 词:近红外光谱技术 淀粉 马氏距离判别 支持向量机(SVM) 定性分析
分 类 号:TS237[轻工技术与工程—粮食、油脂及植物蛋白工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117