检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]周口师范学院计算机科学与技术学院,河南周口466001 [2]许昌供电公司,河南许昌461000
出 处:《电脑开发与应用》2013年第9期74-76,共3页Computer Development & Applications
基 金:中国青年基金重点项目(2012QNA01)
摘 要:短期负荷预测对于电力系统安全经济运行有着重要的作用,支持向量机现已成功地应用在电力预测领域。提出一种基于实时气象因素的样本选择策略,首先利用日气象特征向量缩小样本集,然后基于实时气象因素利用FP-Growth算法选择与预测日相似的训练样本,最后建立支持向量机预测模型。最后通过实验表明,经过样本选择所建立起来的预测模型具有较高的预测精度。Short-term load forecasting plays an important role in the economic operation of the power system security, the support vector machine (SVM) has been successfully applied in the field of electric load forecasting. This paper presents the sample selection strategy based on real-time weather factors. Firstly, we use the day meteorological feature vectors to reduce the sample set and then use FP-Growth algorithm selection based on real-time weather factors to select the training sample which similar to prediction day, and finally prediction model based on SVM is established. The experiment results show that the algorithm which based on sample selection has higher accuracy.
关 键 词:支持向量机 实时因素 负荷预测 FP-GROWTH 关联分析
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173