采用KPCA和BP神经网络的单目车载红外图像深度估计  被引量:12

Depth estimation from monocular vehicle infrared images based on KPCA and BP neural network

在线阅读下载全文

作  者:孙韶媛[1,2] 李琳娜[1,2] 赵海涛[3] 

机构地区:[1]东华大学信息科学与技术学院,上海201620 [2]东华大学数字化纺织服装技术教育部工程研究中心,上海201620 [3]华东理工大学信息科学与工程学院,上海200237

出  处:《红外与激光工程》2013年第9期2348-2352,共5页Infrared and Laser Engineering

基  金:国家自然科学基金(61072090);上海市浦江人才计划(12PJ1402200);中央高校基本科研业务费专项资金(12D10418)

摘  要:提出一种基于监督学习得到深度估计模型的单目车载红外图像深度估计方法。首先用核主成分分析法(KPCA)筛选红外图像特征。将最初提取的红外图像特征用核函数非线性映射到一个线性可分的高维特征空间,再完成主成分分析(PCA),得到降维后的红外图像特征。然后以BP神经网络为模型基础,对红外图像特征和深度值进行训练,训练后的深度估计模型可对单目车载红外图像的深度分布进行估计。实验结果证明,利用该模型估计的单目车载红外图像的深度信息与原红外图像的深度信息一致。A depth estimation algorithm from monocular vehicle infrared image based on depth estimation model by supervised learning was proposed. Firstly, kernel-based principle component analysis (KPCA) was used to select infrared image features. Original features extracted from infrared image were project nonlinearly to a high dimensional and linear separable feature space using kemel function. Principle component analysis (PCA) was performed to get dimension reduction infrared image features. Then the infrared image features and depth values were trained using BP neural network. A depth estimation model was obtained which can estimate the depth distribution of monocular vehicle infrared image. The experimental results show that most of the depth estimated by the model is consistent with the original depth information of infrared image.

关 键 词:深度估计 红外图像 KPCA BP神经网络 

分 类 号:TN219[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象