检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]内蒙古科技大学信息工程学院,内蒙古包头014010
出 处:《工业控制计算机》2013年第9期60-61,共2页Industrial Control Computer
摘 要:在白酒酿制过程中,淀粉的利用率是一个重要而又难测的质量参数。工业多采用化学分析法进行测量,但是该方法需要离线测量,且存在耗时长、误差大的缺陷。针对此问题,提出粒子群优化最小二乘支持向量机回归方法实现淀粉利用率的在线预测。根据酿酒发酵过程的离线数据,建立最小二乘支持向量机回归模型,采用粒子群算法对模型参数进行优化。仿真结果表明,所提方法建立的模型对于淀粉利用率的预测具有较高的预测精度及泛化能力,是一种解决淀粉利用率难测问题的好方法。This paper puts forward particle swarm optimization least squares support vector machine (LS-SVM) regression method to realize the utilization ratio of starch online prediction.The off-line data of spirit brewing processwe are used to build LS- SVM model.The model parameters optimized by particle swarm optimization algorithm.The simulation results show that,in this paper,the proposed method to starch utilization rate prediction model has high forecast accuracy and generalization ability.It is a good solution to the problem that the utilization rate of starch is hard to measure.
关 键 词:最小二乘支持向量机 预测 粒子群优化算法 淀粉利用率
分 类 号:TS262.3[轻工技术与工程—发酵工程] TP18[轻工技术与工程—食品科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.100.196