检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学银川学院,宁夏银川750011 [2]宁夏大学应用数学与力学研究所,宁夏银川750021
出 处:《兰州理工大学学报》2013年第5期139-144,共6页Journal of Lanzhou University of Technology
基 金:国家自然科学基金(10502026;10662006);宁夏高等学校科学技术研究项目
摘 要:提出数值求解二维非定常不可压涡量-流函数Navier-Stokes/Boussinesq方程组的高精度紧致差分格式,格式空间为四阶精度,时间为二阶精度,并且是无条件稳定的.为了验证高精度紧致差分格式的精确性和可靠性,对有解析解的二维非定常不可压Navier-Stokes/Boussinesq方程组的Dirichlet问题和典型的封闭方腔自然对流问题进行数值模拟.A high-accuracy compact difference format of Navier-Stokes/Boussinesq equation set was proposed to solve numerically the two-dimensional non-stationary incompressible vorticity-stream function. This format was of fourth-order accuracy in spaces, second-order accuracy in time, and unconditionally stable. In order to prove the accuracy and reliability of the high-accuracy compact difference format presented in this paper, some numerical simulation of the two-dimensional non-stationary incompressible NavierStokes/Boussinesq equations with Dirichlet boundary conditions, which have analytical solution, and the typical problem of natural-convection in enclosed square cavity were conducted.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124