检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董晓华[1] 刘超[1] 喻丹[1] 李磊[1] 吕志祥[1] 宋三红[1]
机构地区:[1]三峡大学水利与环境学院,湖北宜昌443002
出 处:《水文》2013年第5期10-15,共6页Journal of China Hydrology
基 金:国家自然科学基金项目(40701024)
摘 要:人工神经网络具有很强的非线性处理能力,能够有效地模拟复杂的非线性径流预报过程。传统的基于BP训练算法的人工神经网络具有训练时间较长,容易陷于局部最优值等缺陷,本文对训练算法加以改进,分别使用平均线性粒子群,粒子群和BP算法来优化人工神经网络的各项参数,首先使用标准函数测试了3种算法的全局优化性能,然后用它们对三峡水库的入库径流进行预报,以比较它们的预报性能。结果表明,在3种算法中,平均线性粒子群算法全局寻优的速度最快,稳定性最高,基于平均线性粒子群算法的人工神经网络的径流预报的精度也最高。Artificial neural networks (ANNs) are effective tools in forecasting runoff in river because of their power capability in mapping in-output relations.However,the traditional ANNs based on back-propagation training algorithm need improvement because they have shortcomings in long training times and prone in falling into local optimum points.Therefore,3 algorithms were used to train the ANNs-mean linear particle swarm optimization (ML-PSO) method,original particle swarm optimization (PSO) method and BP method.Their global optimization capabilities were first tested by using the 3 standard mathematical functions,and the ANNs based on the 3 training algorithms were applied in runoff forecasting to test their performances.The results show that among the 3 algorithms,the ML-PSO algorithm is the fastest and most robust one in finding global optimum,and it also is the most accurate one in forecasting runoff.
关 键 词:径流预报 人工神经网络 平均线性粒子群算法 粒子群算法 BP算法
分 类 号:TV12[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3