基于平均线性粒子群算法的人工神经网络在径流预报中的应用  被引量:5

Application of Artificial Neutral Networks in Runoff Forecasting Based on Mean Linear Particle Swarm Optimization Method

在线阅读下载全文

作  者:董晓华[1] 刘超[1] 喻丹[1] 李磊[1] 吕志祥[1] 宋三红[1] 

机构地区:[1]三峡大学水利与环境学院,湖北宜昌443002

出  处:《水文》2013年第5期10-15,共6页Journal of China Hydrology

基  金:国家自然科学基金项目(40701024)

摘  要:人工神经网络具有很强的非线性处理能力,能够有效地模拟复杂的非线性径流预报过程。传统的基于BP训练算法的人工神经网络具有训练时间较长,容易陷于局部最优值等缺陷,本文对训练算法加以改进,分别使用平均线性粒子群,粒子群和BP算法来优化人工神经网络的各项参数,首先使用标准函数测试了3种算法的全局优化性能,然后用它们对三峡水库的入库径流进行预报,以比较它们的预报性能。结果表明,在3种算法中,平均线性粒子群算法全局寻优的速度最快,稳定性最高,基于平均线性粒子群算法的人工神经网络的径流预报的精度也最高。Artificial neural networks (ANNs) are effective tools in forecasting runoff in river because of their power capability in mapping in-output relations.However,the traditional ANNs based on back-propagation training algorithm need improvement because they have shortcomings in long training times and prone in falling into local optimum points.Therefore,3 algorithms were used to train the ANNs-mean linear particle swarm optimization (ML-PSO) method,original particle swarm optimization (PSO) method and BP method.Their global optimization capabilities were first tested by using the 3 standard mathematical functions,and the ANNs based on the 3 training algorithms were applied in runoff forecasting to test their performances.The results show that among the 3 algorithms,the ML-PSO algorithm is the fastest and most robust one in finding global optimum,and it also is the most accurate one in forecasting runoff.

关 键 词:径流预报 人工神经网络 平均线性粒子群算法 粒子群算法 BP算法 

分 类 号:TV12[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象