检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学自动化学院,陕西西安710072
出 处:《飞行力学》2013年第5期458-461,466,共5页Flight Dynamics
基 金:航天科技创新基金资助(CASC201104);航空科学基金资助(2012ZC53043)
摘 要:针对四旋翼飞行器非线性模型的姿态估计问题,提出了一种基于重要密度函数优选的改进粒子滤波(IDOPF)姿态估计算法。该算法通过扩大重要密度函数的覆盖范围,主动从众多重要密度函数中选择更优初始化粒子群。结合动力学模型和基于反步法控制器的相关控制数据,进行了IDOPF粒子滤波算法在四旋翼飞行器姿态估计中的仿真实验。与EKF算法相比,该算法具有更高的估计收敛速度和估计精度,避免了不稳定滤波,改善了滤波效果,验证了IDOPF算法在四旋翼姿态估计的可行性和有效性。This paper presents an estimation method based on the important density function optimization particle filter (IDOPF) in order to solve the problem of quad-rotor aircraft' s attitude estimation. The IDOPF which depends on the important density function select severity according to expand the scope of important density estimation function, and the more optimization particles is acquired by important density functions. The experiments of simulation were carrying out on the control dataset of dynamic model and backstepping controller. Eventually, the results of experiments show that, compared with EKF, the IDOPF has higher estimation convergence speed and higher accuracy, which avoids the unstable filtering, improves the filtering effect and verifies that IDOPF is feasible and effective in the quad-rotor attitude estimation.
分 类 号:V249.1[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15