检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001 [2]洛阳理工学院机械工程系,河南洛阳471000
出 处:《华中科技大学学报(自然科学版)》2013年第9期32-36,共5页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(51009036);中央高校基本科研业务费专项资金资助项目(HEUCFL20111101)
摘 要:提出了一种基于栅格图模糊逻辑的同时定位与构图(SLAM)数据关联算法,用来计算特征观测值和估计值间的误差栅格矩形.对归一化新息和置信度进行了模糊化处理,作为模糊控制器的输入变量,建立适当的模糊规则,最终获得的输出变量即为需要的数据关联结果.该算法有效表达了水下复杂环境中的不确定性和模糊性.仿真实验表明:本算法具有更好的抗干扰能力和鲁棒性;另外引入了可调节系数无迹卡尔曼滤波对噪声模型进行实时调整,改变滤波增益大小.同时仿真实验也验证了该方法的有效性与优越性,使滤波精度得到了有效提高.An association algorithm for simultaneous localization and mapping (SLAM) was proposed based on grid map of fuzzy logic to calculate the errors of grid rectangles between the observed and es- timated characteristic values. The normalized new information and confidence were blurred and taken as the input variable of a fuzzy controller. The finally obtained output variable was the required corre- lation between the data, after the proper fuzzy rules were established. The algorithm can express the uncertainty and fuzziness in the underwater complex environment. Simulation experiments show that the new algorithm has better anti-interference ability and robustness. In addition, the noise model was made of the real-time adjustment by the adjustable coefficient unscented Kalman filter, so the filter gain size was changed. The effectiveness and the superiority of the method were verified by the simu- lation experiment, and the filter precision was also improved effectively.
关 键 词:栅格图 模糊逻辑 数据关联 同时定位与构图 鲁棒性 可调节系数
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69