检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许斌[1] 李忠科[1] 吕培军[2] 孙玉春[2] 王勇[2]
机构地区:[1]第二炮兵工程学院401教研室,陕西西安710025 [2]北京大学口腔医学院,北京100086
出 处:《计算机应用与软件》2013年第11期112-114,122,共4页Computer Applications and Software
基 金:国家科技支撑计划项目(2009BAI81B00)
摘 要:在散乱点云的配准过程中,由于不同次扫描得到的点云模型之间的重叠部分可能较小且点云具有丰富的几何细节,致使传统ICP(Iterative Closest Point)精确配准算法很难得到理想精度。针对这个问题以Chen和Medioni提出的点面距离误差测度函数为基础,结合基于特征的点云配准思想,设计了一种先建立拥有接近的主曲率的匹配点对集合,然后将二次拟合曲面间的平均距离作为误差测度进行迭代优化的精确配准算法。该算法在微小距离精确配准的应用环境下能提供相对于传统ICP算法更好的精度和更高的效率。In process of scattered point cloud registration, since the overlapping portions of point cloud models derived from scanning in different times are "always quite small, plus the point cloud has abundant geometric details, this makes the ideal accuracy becomes difficult to be gained by traditional ICP accurate registration algorithm. In light of this problem, we design an accurate registration algorithm, it is based on the metric function of point to surface distance error put forward by Chen and Medioni, and combining the property-based point cloud registration idea. First it establishes matching points set with closed main curvatures, and then it takes the average distance between quadric fitting surfaces as the error metric for iterative optimisation. In application environment of minute distance, this algorithm can provide better precision and higher efficiency than the traditional ICP algorithm.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.79