检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北工业大学计算机科学与软件学院,天津300401
出 处:《计算机仿真》2013年第12期311-316,共6页Computer Simulation
基 金:天津市应用基础研究计划(10JCZDJC16000)
摘 要:为使移动机器人按照某一性能指标搜索一条从起始点到目标点的无碰撞最优路径,提出了势场平衡路径规划算法,针对障碍物对机器人有排斥力且目标点对机器人有吸引力,利用障碍物对机器人的斥力值,建立障碍物环境地图,通过搜索斥力值与引力值之和的最小值,进行路径规划。同时,与滚动窗口路径规划算法相结合,完成动态环境下的路径规划。仿真实验表明,改进算法具有较强的全局与局部搜索能力,解决了势场法中易存在的局部极小值问题,使机器人能在复杂的动态环境中顺利避开障碍物,快速的以最优路径到达目标点。This paper proposed a Potential Field Equilibrium Algorithm which focuses on addressing the optimal path without collision for the robot from starting point to target that based on one certain capability of the mobile robot. Basically, the main idea of the Potential Field Equilibrium Algorithm is derived from the feature that repulsive force exists between mobile robot and obstacle, while attractive force exists between mobile robot and the target. Ac- cordingly, the algorithm maps the entire obstacle environment and carries out map planning by retrieving the minimum value of the sum of repulsive force and attractive force. Combined with the scrolling window path planning algo- rithm, the mobile robot can find out the optimal path efficiently and rapidly. The simulation experiment shows that this algorithm has strong global and local search capability, solves the problem of local minima potential field method easily, so that the robot can avoid obstacles in the complex dynamic environments smoothly, quickly reach the opti- mal path to the target point.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222