具有增加删除机制的正则化极端学习机的混沌时间序列预测  被引量:2

Chaotic time series prediction using add-delete mechanism based regularized extreme learning machine

在线阅读下载全文

作  者:赵永平[1] 王康康[1] 

机构地区:[1]南京理工大学机械工程学院,南京210094

出  处:《物理学报》2013年第24期78-85,共8页Acta Physica Sinica

基  金:国家自然科学基金(批准号:51006052);南京理工大学"卓越计划""紫金之星"资助的课题~~

摘  要:针对正则化极端学习机的隐层具有随机选择的特性,提出了一种增加删除机制来自适应地确定正则化极端学习机的隐层节点数.这种机制以对优化目标函数影响的大小作为评价隐层节点优劣的标准,从而淘汰那些比较"差"的节点,将那些比较"优"的节点保留下来,起到一个优化正则化极端学习机隐层节点数的目的.与已有的只具有增加隐层节点数的机制相比较,本文提出的增加删除机制在减少正则化极端学习机隐层节点数、增强其泛化性能、提高其实时性等方面具有一定的优势.典型混沌时间序列的实例证明了具有增加删除机制的正则化极端学习机的有效性和可行性.Considering a regularized extreme learning machine(RELM) with randomly generated hidden nodes, an add-delete mechanism is proposed to determine the number of hidden nodes adaptively, where the extent of contribution to the objective function of RELM is treated as the criterion for judging each hidden node, that is, the large the better, and vice versa. As a result, the better hidden nodes are kept. On the contrary, the so-called worse hidden nodes are deleted. Naturally, the hidden nodes of RELM are selected optimally. In contrast to the other method only with the add mechanism, the proposed one has some advantages in the number of hidden nodes, generalization performance, and the real time. The experimental results on classical chaotic time series demonstrate the effectiveness and feasibility of the proposed add-delete mechanism for RELM.

关 键 词:混沌时间序列 人工神经网络 极端学习机 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] O211.61[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象