铅酸蓄电池模型研究及SOC模糊估计  被引量:10

Study on the model of lead-acid battery and fuzzy estimation of state-of-charge

在线阅读下载全文

作  者:赵轩[1] 康留旺[1] 马建[1] 贺伊琳[1] 肖广朋[1] 

机构地区:[1]长安大学汽车学院,陕西西安710064

出  处:《蓄电池》2014年第1期10-14,共5页Chinese LABAT Man

基  金:陕西省科技计划项目(NO.2010K01-071)

摘  要:为了深入研究铅酸蓄电池在充放电过程中内阻等特征参数的变化,首先,基于铅酸蓄电池的工作机理建立蓄电池充放电模型,并进行不同倍率的充放电实验;其次,基于实验数据建立各模型参数与SOC之间的函数关系,同时对BP神经网络模型进行训练以实现SOC的精确估计。最后,结合铅酸蓄电池充放电模型和BP神经网络模型仿真铅酸蓄电池充放电过程,仿真结果和实际结果吻合,有助于对铅酸蓄电池内阻等特征参数的研究。To further study the battery characteristic parameters such as the internal resistance during the charging and discharging process, the paper firstly built the lead-acid battery model based on the work mechanism and carried on the charging and discharging experiments at different current rates. And then, based on the experiments data, the functions between the model parameters and the SOC were established and the BP neural network model was trained to estimate the SOC. Finally, the battery model was combined with the neural network model to simulate the lead-acid battery charging and discharging process. The simulation showed that the simulations could better describe the battery work mechanism and help to study the characteristic parameters.

关 键 词:铅酸蓄电池 蓄电池模型 神经网络 SOC 仿真 

分 类 号:TM912.1[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象