基于混合核函数SVM水文时序模型及其应用  被引量:27

Hydrological time series model based on SVM with mixed kernel function and its application

在线阅读下载全文

作  者:唐奇[1] 王红瑞[1] 许新宜[1] 王成[1] 

机构地区:[1]北京师范大学水科学研究院水沙科学教育部重点实验室,北京100875

出  处:《系统工程理论与实践》2014年第2期521-529,共9页Systems Engineering-Theory & Practice

基  金:国家自然科学基金(51279006);国家科技支撑计划(2013BAB05B04)

摘  要:核函数的选取与构造是SVM应用的关键所在.传统SVM在水文时序分析方面的应用多是默认选取单一径向基核函数,而忽略了核函数的选择对模型精度和预测结果的影响.本文基于Mercer核理论,将多项式核与径向基核进行线性组合,构造出混合核函数,并植入SVM中,对水文时序建立自回归预测模型.基于武山站和南河川站的月径流预测结果表明,预测序列的相对误差及均方误差明显优于任一单一核函数.这是由于混合核函数能够更好地适应并处理复杂的水文时序变化,因此提高了预测精度.该研究为利用SVM解决复杂多变的非线性水文时序提供了新的探索模式.Kernel function plays an important role in the application of SVM model. Radial basis function (RBF) is used as the most common one in hydrological series analysis and prediction. However, the influence of the selection of kernel function and its structure has been neglected. Therefore, an improved SVM model is developed and used for hydrological predication in this paper. Based on Mercer theorem, polynomial kernel and radial basis kernel are combined to construct the mixed kernel function. Then, auto regression SVM model of mixed kernel function is set up for hydrological series prediction. Tile model is applied in Wushan and Nanheehuan hydrological station, and the result of monthly runoff prediction shows that the RE and MSE of the improved model are lower than the single kernel function model. This is mainly because mixed kernel function can meet the needs of complex hydrological time series changes, which makes the forecast precision increased. This may also provide a new exploration method for SVM model on research of the non-linear hydrological series.

关 键 词:支持向量机 混合核函数 水文时序 月径流量 武山站 南河川站 

分 类 号:TV124[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象