检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张仁鹏[1,2] 杨金孝[1] 潘佳华 黄晓东[1]
机构地区:[1]西北工业大学,陕西西安710129 [2]西安通信学院,陕西西安710106
出 处:《计算机仿真》2014年第3期65-69,共5页Computer Simulation
摘 要:在无人机航迹规划效率优化问题的研究中,针对采用粒子群算法的无人机航迹规划后期,算法收敛速度减慢、航迹规划效率低的问题,提出了一种改进粒子群算法的无人机航迹规划方法。在航迹规划过程中,建立粒子浓度机制,对陷入局部最优的粒子群进行粒子浓度分析,结合粒子的适应度构造粒子平衡算子,对解空间中适应度大、浓度低的粒子进行相应的变异,促使局部最优解快速跳出局部极值,加快收敛速度,提高规划效率。通过仿真结果验证了改进粒子群算法在无人机三维航迹规划中的有效性。The basic PSO algorithm in the optimization process of UAV route planning, at the last stage of the al- gorithm, can reduce the efficiency of route planning. To overcome this problem, we proposed a methord for UAV route planning based on an an improved particle swarm optimization algorithm. In the route planning, we established a particle concentration mechanism, analysed the concentration of the particle swarm which constructed a particle bal- ance operator in the local optimum combined with the particles fitness, gave corresponding variation to those particles which have better fitness and lower concentration, and prompted local optimal solution to jump out of the local ex- treme points quickly, to find the optimal route in a more rapid convergence speed. The simulation results show the ef- fectiveness of the improved PSO algorithm in the 3D route planning of UAV.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151