检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机仿真》2014年第3期397-401,共5页Computer Simulation
摘 要:在软件缺陷检测中,常常伴有大量的冗余干扰信息,给准确检测造成困难。为了提高对软件缺陷预测准确率,提出了一种主成分分析和混沌粒子算法优化支持向量机的软件缺陷预测方法(PCA-ISVM)。首先利用主成分分析消除软件数据冗余信息,然后处理后软件数据输入到支持向量机进行训练,并通过混沌粒子群算法优化支持向量机参数,建立最优软件缺陷预测模型,最后采用仿真对模型有效性验证。仿真结果表明,提出的模型有效消除软件数据中冗余信息,获得最优支持向量机参数,从而提高了软件缺陷预测准确率和加快软件缺陷预测速度。In order to improve the prediction accuracy of software defects of support vector machine, this paper proposed a software defect prediction model based on principal component analysis and support vector machine opti- mized by chaotic particle optimization algorithm. Firstly, principal component analysis was used to eliminate redun- dant information in software defect data, and then chaotic particle swarm optimization algorithm was used to optimize the parameters of support vector machine parameter, and the support vector machine was trained to establish the opti- mal software defect prediction model. Finally, the validity of model was verified with data set. The simulation results show that the proposed model has improved the software defects prediction accuracy and has good nonlinear prediction ability.
关 键 词:软件缺陷 主成分分析 混沌粒子群优化算法 支持向量机
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249