检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学电子信息工程学院,安徽合肥230601
出 处:《安徽大学学报(自然科学版)》2014年第1期48-55,共8页Journal of Anhui University(Natural Science Edition)
基 金:国家自然科学基金资助项目(61172127);安徽省教育厅重点科研计划资助项目(KJ2010A021);安徽省自然科学基金资助项目(1208085QF104)
摘 要:研究基于最小二乘小波孪生支持向量机(least squares wavelet twin support vector machines,简称LS-WTSVM)的遥感多光谱影像云检测.首先根据云在不同波段中大气的辐射特点,结合Landsat7 ETM+影像数据的光谱特性获得云像元的光谱特征,再通过提取每个图像块的灰度共生矩阵得到相应像元的纹理结构特征,根据像元的光谱特性和纹理结构特征构造特征向量,最后利用最小二乘小波孪生支持向量机多分类算法进行Landsat7 ETM+影像像元的云检测,实现不同类型云区的多分类识别.仿真实验结果表明,该算法能准确地检测出多光谱影像中的厚云和薄云.In this paper, a novel cloud detection method for remote sensing multi-spectral image based on least squares wavelet twin support vector machines (LS-WTSVM) was proposed. Firstly, the spectral feature of the cloud pixel was acquired on the basis of the atmospheric radiation characteristics of cloud in different bands and the spectral characteristics of Landsat7 ETM + image data. Then the texture feature of the corresponding pixel was obtained by extracting the gray level co-occurrence matrix of the each image block. Using the spectral properties and texture feature of pixels to construct the feature vectors and training LS-WTSVM multi-classification algorithm to detect the Landsat7 ETM+ image cloud pixels, different types of cloud was multi-classified and recognized. Experimental results showed that this method could detect the thick cloud and thin cloud of multi- spectral image accurately.
关 键 词:Landsat7影像 云检测 多分类 最小二乘小波孪生支持向量机 小波核
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3