基于神经网络的电液转台非线性积分滑模控制  被引量:12

Integral sliding mode nonlinear controller of electrical-hydraulic flight simulator based on neural network

在线阅读下载全文

作  者:韩松杉[1] 焦宗夏[1] 汪成文[1] 石岩[1] 

机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100191

出  处:《北京航空航天大学学报》2014年第3期321-326,共6页Journal of Beijing University of Aeronautics and Astronautics

基  金:国家重点基础研究发展计划资助项目(2014CB046406)

摘  要:针对高精度电液飞行仿真转台具有高度非线性、参数不确定和不确定非线性等特点,提出了一种基于RBF(Radial Basis Function)神经网络的非线性积分滑模鲁棒控制方法.采用自适应RBF神经网络对该系统存在的参数不确定性和不确定非线性进行补偿,从而降低滑模控制器对切换项的增益的需求,进而减小系统抖振幅值.积分滑模面的设计能消除外部干扰对系统带来的稳态误差.根据积分滑模变结构控制器的特点,将控制律分为等效控制律和到达控制律.等效控制律使系统运动于滑模面附近,到达控制律可使处于状态空间内任意初始位置的系统趋近于滑模面,并进一步通过Lyapunov方法证明了系统的渐近稳定性.实验结果表明,所提出的非线性控制器不仅能满足电液转台的高精度跟踪性能的要求,且对参数不确定性和不确定非线性具有一定的鲁棒性.For the feature that high-accuracy electrical-hydraulic flight simulator (EHFS) is highly non-linear and contains parametric uncertainties and uncertain nonlinearities, an integral sliding mode nonlinear ro- bust controller based on radial basis function (RBF) neural network was proposed. The adaptive RBF neural network was adopted to eliminate the effect of parametric uncertainties and uncertain nonlinearities. By reduc- ing the gain of switching function in sliding mode controller, chattering phenomenon could be minimized signif- icantly. The steady state error from external disturbances could be eliminated by integral sliding control law, which was divided into an equivalent control law and a hitting control law. Equivalent control law was designed to keep the system sliding along the sliding surface. Hitting control law was applied to drive the representation point of the state space onto the sliding surface. The globally asymptotic stability of developed controller was proven via Lyapunov analysis. Comparative experimental results demonstrate the effectiveness of the proposed algorithm.

关 键 词:液压伺服控制 电液飞行转台 径向基函数神经网络 积分滑模 鲁棒控制 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象