检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴庆标[1]
出 处:《浙江大学学报(理学版)》2001年第1期1-6,共6页Journal of Zhejiang University(Science Edition)
基 金:浙江省自然科学基金资助项目! (10 0 0 0 2 );浙江省教委科研基金资助项目! (G2 980 2 )
摘 要:本文讨论了用 Monte Carlo法求积分区域为复连通曲面体的高维积分 ,即用 Monte Carlo法估计下面形式的高维积分 :I =∫G-∪sj=1Gj…∫f (x1,x2 ,… ,xn) dx1dx2 … dxn,其中 n为积分维数 ,Gj G(j=1,2 ,… ,s) ,分别根据 G体积已知 ,Gj(j =1,2 ,… ,s)体积未知和 G,Gj(j=1,2 ,… ,s)体积都未知情形得出估计法、收敛性定理和具体算法 ,另外 ,也对求复连通曲面体的重心问题进行分析 ,得出估计法和收敛性定理 .The Monte Carlo integration that the domain of integration is complex connected curved polyhedron was discussed in this paper. \$I=∫\-\{G-∪sj=1G\-j\}\:∫f(x\-1,x\-2,\:,x\-n)\%d\%x\-1\%d\%x\-2\:\%d\%x\-n\$, where \%n\% is the dimension, \$G\-jG(j=1,2,\:,s)\$. In known and unknown volume of the integral domain , two estimation methods and convergence theorems were presented. Estimating barycenter of complex connected curved polyhedron was also discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117