检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110004
出 处:《高校化学工程学报》2014年第1期115-122,共8页Journal of Chemical Engineering of Chinese Universities
基 金:国家高技术研究发展计划(2011AA060204);国家自然科学基金(61203103);中央高校基本科研业务费(N110304006)
摘 要:提出了一种混合模型两步辨识策略,用以解决间歇反应过程的建模问题,并能够有效融合先验知识及过程数据信息。该策略将混合模型的同步辨识分解成为两个独立的步骤,首先确定混合模型的结构,并利用Tikhonov正则化方法实现间歇反应过程反应速率的精确估计;接下来采用核偏鲁棒M-回归(kernel partial robust M-regression,KPRM)算法建立过程变量与反应速率间的经验模型,从而有效抑制过程数据中离群点的影响。利用半间歇过程仿真实验对所提出的策略进行验证,获得了相比于传统方法更高的估计及预测精度。In order to resolve the problem of modeling batch reaction process, a two-step strategy was presented for the identification of hybrid models, where the prior knowledge and the information provided by process data can be effectively integrated. The simultaneous identification of hybrid model was decomposed into two separate steps by the proposed strategy. At the first step, the structure of hybrid model was determined, and Tikhonov regularization method was employed to estimate the reaction rates of batch reaction process precisely. At the second step, kernel partial robust M-regression (KPRM) algorithm was adopted to calibrate the empirical model between the process variables and the reaction rates, where the negative effects of outliers in process data can be effectively suppressed. A semi-batch simulation experiment was used to verify the proposed strategy, and comparing with traditional method, higher estimation and prediction accuracy were obtained.
关 键 词:间歇反应过程 混合模型 模型辨识 核偏鲁棒M-回归 离群点
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3