检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡继华[1,2] 李国源[1,2] 程智锋[1,2]
机构地区:[1]中山大学工学院,广州市510006 [2]广东省智能交通系统重点实验室,广州510006
出 处:《交通信息与安全》2014年第2期17-22,共6页Journal of Transport Information and Safety
基 金:国家自然科学基金项目(批准号:41271181);2013年广东省安全生产专项基金项目(批准号:2013-102)资助
摘 要:公交站间行程时间具有明显的时段分布特征,且公交车辆是典型的时空过程对象,其运行具有状态转移性。为了准确预测公交站间行程时间,在应用马尔科夫链预测公交站间行程时间基础上提出其改进算法。通过大量公交GPS数据构造不同时段下具体线路站间行程时间的马尔科夫状态转移矩阵,并对站间行程时间进行状态推导,采用移动误差补偿法对马尔科夫预测值进行动态修正,改进原有的马尔科夫预测算法。以广州市BRT线路B1的实际运行数据对算法进行了验证,结果表明,移动误差补偿改进算法优于基本马尔科夫算法及BP模型,同时该改进算法还具有实现过程较简单。Bus travel time between stops has obvious period distribution characteristics .The buses ,with the char-acteristic of state transition ,have a typical space-time process .In order to predict the bus travel time between stops in the future period of time accurately ,an improved algorithm based on the basic Markov chain is proposed .The algorithm can be divided into two steps .The first step is to set up the first-order Markov transition matrix for a specific bus route dur-ing different period of time with the bus GPS data and then to predict the bus travel time between stops based on the ma-trix .The second step is to improve the basic Markov chain algorithm by leading up the compensation of moving error . The algorithm was tested and validated by using the data taken from the bus route B1 of Guangzhou BRT .The test result shows that the improved algorithm with the compensation of moving error provides better predicting accuracy than both basic Markov chain algorithm and the BP neural network algorithm and that the improved algorithm is simple in imple-mentation .
分 类 号:U491.17[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42