检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:艾施荣[1,2] 吴瑞梅[3] 吴彦红[3] 严霖元[3]
机构地区:[1]同济大学软件学院,上海200096 [2]江西农业大学软件学院,江西南昌330045 [3]江西农业大学工学院,江西南昌330045
出 处:《江西农业大学学报》2014年第2期428-433,共6页Acta Agriculturae Universitatis Jiangxiensis
基 金:江西省科技计划项目(20112BBF60019);江西省教育厅科学基金项目(GJJ11081)
摘 要:提出了基于高光谱图像技术的庐山云雾茶产地鉴别方法。利用高光谱成像系统采集地理标志庐山云雾茶和广西、四川、福建3个其他产地云雾茶的高光谱数据,采用主成分分析法从原始高光谱数据块中选取3个特征波长:792.20,831.47,870.97 nm,分别提取每个特征波长下的灰度图像的纹理特征,利用BP神经网络方法建立庐山云雾茶产地鉴别模型。模型训练时的回判识别率为97.25%,预测时的识别率为95%,说明利用高光谱图像技术追溯庐山云雾茶产地可行。A rapid method was developed for discrimination of the geographical origins of Lushan mist tea by hyper-spectral imaging technique .The mist tea with Lushan geographic signs and mist tea from other places ( Guangxi ,Sichuan and Fujian ) were investigated .A hyper-spectral imaging system was used to collect hyper-spectral image data of the tea .Three feature wavelengths namely ,792.20,831.47 and 870.97 nm were opti-mized by principal component analysis method from the raw hyper-spectral images .The texture features were extracted from each gray image of each characteristic wavelength .BP-ANN model was used to develop a dis-crimination model.The correct discrimination rate of the model was 97.5%in the training set,and the discrimi-nation rate of model was 95%in the prediction set .The overall results sufficiently demonstrated that hyper-spectral imaging technology could be used to identify rapidly the geographical origins of mist tea .
关 键 词:高光谱图像 BP神经网络 主成分分析 庐山云雾茶 产地鉴别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.0.151