检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李庆辉[1] 李艾华[1] 苏延召[1] 马治明[2]
机构地区:[1]第二炮兵工程大学502教研室 [2]中国人民解放军96111部队
出 处:《红外与激光工程》2014年第5期1660-1666,共7页Infrared and Laser Engineering
基 金:国家自然科学基金(61132008)
摘 要:针对传统视频型火焰检测算法误报率高、局限性强等问题,提出一种四步火焰检测算法。首先利用一种自适应混合高斯模型(GMM)检测视频序列中的运动目标;然后采用模糊C均值(FCM)聚类算法分割疑似火焰区域与非火区域;再提取疑似火焰区域的面积变化、表面不均度等时空特征参数;最后将这些特征参数输入训练好的支持向量机(SVM)分类器以识别火焰区域。实验结果表明,算法不但在提高了检测率的同时降低了误检率,而且适用范围广,是一种有效的火焰检测算法。An effective, four-stage fire-detection algorithm used to automatically detect fire in video images was presented in this paper. An adaptive Gaussian mixture model was used to detect moving regions in a video clip. A fuzzy C- means (FCM) algorithm was adopted to segment the candidate fire regions (fire and fire-colored objects) from these moving regions based on the color of fire. Some special parameters were extracted based on the tempo-spatial characteristics of fire regions; these parameters included the area randomness, surface roughness and motion estimation of fire. Finally, these parameters extracted from the third stage were used as input feature vectors to train a support vector machine(SVM) classifier, which was then used by the fire alarm to distinguish between fire and non-fire. Experimental results indicate that the proposed method outperforms other fire detection algorithms, providing high reliability and a low false alarm rate.
关 键 词:火焰检测 混合高斯模型 模糊C均值聚类 支持向量机
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117